Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Trace Elem Res ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38263355

RESUMO

To fulfill the nutritional requirements of poultry, effective Zn supplementation is required due to Zn deficiency in basic feed. In this study, we investigated the effects of DMY-Zn (dihydromyricetin zinc chelate) on the growth performance, morphology, and biochemical indices; the expression of intestinal barrier-related genes; the intestinal microflora; and the cecum metabolome of Magang geese. A total of 300 14-day-old Magang geese (equal number of males and females) with an average body weight of 0.82 ± 0.08 kg were randomly divided into five groups and fed a basal diet; these groups were given DMY-Zn (low, medium, or high level of DMY-Zn with 30, 55, or 80 mg/kg Zn added to the basal diet) or ZnSO4 (80 mg/kg Zn added) for 4 weeks. Our results revealed that DMY-Zn significantly impacts growth and biochemical indices and plays a significant role in regulating the intestinal barrier and microflora. DMY-Zn is involved in the upregulation of intestinal barrier gene (ZO1 and MUC2) expression, as well as upregulated Zn-related gene expression (ZIP5). On the other hand, a low concentration of DMY-Zn increased the ɑ diversity index and the abundance of Lactobacillus and Faecalibacterium. Additionally, a cecal metabolomics study showed that the main metabolic pathways affected by DMY-Zn were the pentose phosphate pathway, the biosynthesis of different alkaloids, and the metabolism of sphingolipids. In conclusion, DMY-Zn can reduce feed intake, increase the expression of intestinal barrier-related genes, help maintain the intestinal microflora balance, and increase the abundance of beneficial bacteria in the intestine to improve intestinal immunity.

2.
Biomedicines ; 11(10)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37893205

RESUMO

Bacterial infectious disorders are becoming a major health problem for public health. The zeolitic imidazole framework-8 with a novel Cordia myxa extract-based (CME@ZIF-8) nanocomposite showed variable functionality, high porosity, and bacteria-killing activity against Staphylococcus aureus, and Escherichia coli strains have been created by using a straightforward approach. The sizes of synthesized zeolitic imidazole framework-8 (ZIF-8) and CME@ZIF-8 were 11.38 nm and 12.44 nm, respectively. Prepared metal organic frameworks have been characterized by gas chromatography-mass spectroscopy, Fourier transform spectroscopy, UV-visible spectroscopy, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. An antibacterial potential comparison between CME@ZIF-8 and zeolitic imidazole framework-8 has shown that CME@ZIF-8 was 31.3%, 28.57%, 46%, and 47% more efficient than ZIF-8 against Staphylococcus aureus and 43.7%, 42.8%, 35.7%, and 70% more efficient against Escherichia coli, while it was 31.25%, 33.3%, 46%, and 46% more efficient than the commercially available ciprofloxacin drug against Staphylococcus aureus and 43.7%, 42.8%, 35.7%, and 70% more efficient against Escherichia coli, respectively, for 750, 500, 250, and 125 µg mL-1. Minimum inhibitory concentration values of CME@ZIF-8 for Escherichia coli and Staphylococcus aureus were 15.6 and 31.25 µg/mL respectively, while the value of zeolitic imidazole framework-8 alone was 62.5 µg/mL for both Escherichia coli and Staphylococcus aureus. The reactive oxygen species generated by CME@ZIF-8 destroys the bacterial cell and its organelles. Consequently, the CME@ZIF-8 nanocomposites have endless potential applications for treating infectious diseases.

3.
Plant Physiol Biochem ; 204: 108081, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37847972

RESUMO

Immense crowd of heavy metal in cultivated land is evolving as a global concern as a result of boosted level of soil toxicity. Amongst various metals, Lead (Pb) contamination has become alarming for plant and human heath through ingesting of polluted soils and food crops. To counterfeit this, a nanotechnological neutralizer effective in form of soiling of cobalt oxide Co3O4 Nbs to Acacia jacquemontii and Acacia nilotica with various meditations as 25, 50, 75 and 100 ppm). A Substantial result was observed on growth of plants but premium results were got by applications of cobalt oxide Nbs at 75 ppm. By this means, enhanced root length (39%), fresh weight (32%), shoot length (58%), as well as dry weight (28%) in selected Acacia species compared to control. Chlrophy contents in A. jacquemontii were estimated to be 0.23, 2.73 and 3.19 mg/L with treated with different concentrations of cobalt Nbs while in A. nilotica, the contents were 0.51, 2.93 and 3.12 mg/L respectively on same concentration. The atomic absorption (AAS), antioxidant activity and defendable positive comeback by using Co3O4 Nbs. Hence, the greenly synthesized Co3O4 Nbs counter acts lead toxicity to override and preserving the growth of plant. Such nanotechnological kits can consequently enhance the alternative system to stunned toxicity for distinguish the yield demand end to end with the progress of agronomic management approaches.


Assuntos
Acacia , Poluentes do Solo , Humanos , Chumbo/toxicidade , Acacia/fisiologia , Plantas , Solo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
4.
Antioxidants (Basel) ; 12(3)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36978866

RESUMO

Litchi's post-harvest pericarp browning is one of the main constraints that drastically affect its visual attributes and market potential. Therefore, the vanillin-taurine Schiff base (VTSB) compound prepared from natural compounds of vanillin and taurine exhibited higher DPPH-radical-scavenging invitro antioxidant activity than vanillin. VTSB first-time report to mitigate the postharvest browning of litchi fruit. In this study, litchi fruits were dipped in 0.3 mM (based on pre-experiment) VTSB solution and stored at 25 ± 1 °C for six days to examine their effects on browning and postharvest quality. Fruit treated with VTSB had lower levels of browning degree (BD), browning index (BI), weight loss, soluble quinone (SQ), relative electrolyte leakage (REL), and malondialdehyde (MDA) than control fruit. Additionally, total anthocyanins and phenolic concentrations, Total soluble solids (TSS), and 2,2-diphenyl-1-picrylhydrazyl-free radical scavenging activity (DPPH-RSA) were preserved higher in VTSB-treated litchi fruit. The levels of Ascorbate peroxidase (APX), Superoxide dismutase (SOD), and Catalase (CAT) were higher in treated fruit, whereas polyphenol oxidase (PPO) and Peroxidase (POD) were decreased during the postharvest period. This study suggested that VTSB would be very useful for different post-harvest problems in the fruit and vegetable industry.

5.
ACS Omega ; 8(6): 5836-5849, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36816675

RESUMO

Massive accumulation of heavy metals in agricultural land as a result of enhanced levels of toxicity in the soil is an emerging global concern. Among various metals, zinc contamination has severe effects on plant and human health through the food chain. To remove such toxicity, a nanotechnological neutralizer, cobalt oxide nanoballs (Co3O4 Nbs) were synthesized by using the extract of Cordia myxa. The Co3O4 Nbs were well characterized via UV-vis spectrophotometry, scanning electron microscopy, and X-ray diffraction techniques. Green-synthesized Co3O4 Nbs were exposed over Acacia jacquemontii and Acacia nilotica at different concentrations (25, 50, 75, and 100 ppm). Highly significant results were observed for plant growth by the application of Co3O4 Nbs at 100 ppm, thereby increasing the root length (35%), shoot length (48%), fresh weight (44%), and dry weight (40%) of the Acacia species with respect to the control. Furthermore, physiological parameters including chlorophyll contents, relative water contents, and osmolyte contents like proline and sugar showed a prominent increase. The antioxidant activity and atomic absorption supported and justified the positive response to using Co3O4 Nbs that mitigated the heavy-metal zinc stress by improving the plant growth. Hence, the biocompatible Co3O4 Nbs counteract the zinc toxicity for governing and maintaining plant growth. Such nanotechnological tools can therefore step up the cropping system and overcome toxicity to meet the productivity demand along with the development of agricultural management strategies.

6.
J Biotechnol ; 365: 1-10, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36708999

RESUMO

Herein, silver and zinc oxide Nanoparticles (NPs) were synthesized by using W. coagulant fruit extract as reducing agent and capping agent. The green synthesized NP with distinct properties were used for novel application against fungal and bacterial pathogen of honey bee (A. mellifera). The UV-spectroscopy confirms the synthesis of silver and zinc oxide NPs at 420 nm and 350 nm respectively. Further, XRD evaluated the monoclinic structure of Ag NPs while ZnO NPs showed wurtzite hexagonalcrystlized structure. Resistant honey bee pathogens such Paenibacilluslarvae, Melissococcus plutonius and Ascosphaera apis were isolated, identified and cultured in vitro to assess the antimicrobial potentials of Ag and ZnO NPs. Additionally, different biomolecules provide access to achieve maximum and stable Ag and ZnO NPs. It was also observed that with increasing the concentration of zinc oxide NPs and sliver NPs, zone of inhibition was also increased. Thus, present findings show that plant extracts can be a useful natural resource to prepare functional nonmaterial for targeted applications especially in the field of apicultural research.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Óxido de Zinco , Abelhas , Animais , Zinco/farmacologia , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Antibacterianos/farmacologia , Antibacterianos/química , Prata/farmacologia , Prata/química , Anti-Infecciosos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana
7.
Appl Biochem Biotechnol ; 195(1): 264-282, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36074235

RESUMO

Physical and chemical methods for production of nanoparticles (NPs) are not only harmful for environment but also toxic for living organism. The present study attempts to synthesize ZnO NPs using the natural plant extract of Fagonia cretica. The phytochemical screening of F. cretica water extract was performed to check the presence of biologically active compounds like alkaloids, tannins, carbohydrates, proteins, phenols, saponins, flavonoids, and steroids. Well-prepared ZnO NPs given sharp absorption peak at 362 were confirmed by UV-visible. XRD analysis showed the ZnO NPs having wurtzite hexagonal structure with crystalline form. TEM analysis endorses flower-shaped ZnO nanoparticles ~ 100-1000 nm. FTIR spectrum suggested the involvement of phenolic groups and amino acids and amide linkages in protein performs as the stabilizing agent in the synthesis of ZnO NPs. The ZnO NPs showed strong antibacterial behavior against two bacterial strains Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli. In addition, ZnO NPs exhibited strong antioxidant activity of 79%:85.6%:89.9% at 5 µg/mL:10 µg/mL:5 µg/mL concentration of ZnO NPs respectively. This work indicates that Fagonia is considered to be appropriate and promising candidate for extending the innovative applications in the field of medicine and industry and also helpful and useful to the scientific communities.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Óxido de Zinco/química , Nanopartículas/química , Bactérias/metabolismo , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Extratos Vegetais/química , Antibacterianos/química , Testes de Sensibilidade Microbiana , Nanopartículas Metálicas/química , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Materials (Basel) ; 15(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36363192

RESUMO

In this paper, a series of eutectic hydrated salts was obtained by mixing Na2HPO4·12H2O (DHPD) with K2HPO4·3H2O (DHPT) in different proportions. With the increase in the content of DHPT, the phase transition temperature and melting enthalpy of eutectic hydrated salts decreased gradually. Moreover, the addition of appropriate deionized water improved the thermal properties of eutectic hydrated salts. Colloidal silicon dioxide (SiO2) was selected as the support carrier to adsorb eutectic hydrated salts, and the maximum content of eutectic hydrated salts in composite PCMs was 70%. When the content of the nucleating agent (Na2SiO3·9H2O) was 5%, the supercooling degree of composite PCMs was reduced to the minimum of 1.2 °C. The SEM and FT-IR test results showed that SiO2 and eutectic hydrated salts were successfully combined, and no new substances were formed. When the content of DHPT was 3%, the phase transition temperature and melting enthalpy of composite PCMs were 26.5 °C and 145.3 J/g, respectively. The results of thermogravimetric analysis and heating-cooling cycling test proved that composite PCMs had good thermal reliability and stability. The application performance of composite PCMs in prefabricated temporary houses was investigated numerically. The results indicated that PCM panels greatly increased the Grade I thermal comfort hours and reduced energy consumption. Overall, the composite PCM has great development potential building energy conservation.

9.
ACS Omega ; 7(39): 34770-34778, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36211074

RESUMO

Green nanotechnology facilitates the blooming of zinc oxide (ZnO) and silver (Ag) nanoparticles (NPs) with distinct flowerlike and spherical morphologies, respectively. The well-characterized NPs with an average size of 35 nm (ZnO) and 25 nm (Ag) were functionalized on the cresty plates for antibacterial inhibition against Staphylococcus aureus and Pseudomonas aeruginosa, with the flowerlike ZnONPs exhibiting 90.9% inhibition and AgNPs exhibiting 100% inhibition. Further, the in vivo underwater troughs for hematological, immunological, and serological analysis in Labeo rohita exhibited 102 > 575 > 104 and 206 > 109 > 81% at concentrations of 1, 2, and 3 mg/L with 4-day and 15-day treatment, respectively, over ZnONPs. However, AgNPs exhibited 257 > 408 > 124 and 86 > 202 > 43% with 4-day and 15-day treatment, respectively, at the same concentrations. The classical ZnNPs and AgNPs exhibited excellent inhibition potential and significant transfiguration of hematological, enzymological, and protein parameters as safe nanomedicine, but ZnONPs were found to be 58, 69, 29 and 34, 51, 70% more active than AgNPs with 4-day and 15-day treatment, respectively. Therefore, the onset of ROX and antioxidant arena favors beneficial cellular drifting of NPs.

10.
Molecules ; 27(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36144499

RESUMO

Protein corona composition and precise physiological understanding of differentially expressed proteins are key for identifying disease biomarkers. In this report, we presented a distinctive quantitative proteomics table of molecular cell signaling differentially expressed proteins of corona that formed on iron carbide nanoparticles (NPs). High-performance liquid chromatography/electrospray ionization coupled with ion trap mass analyzer (HPLC/ESI-Orbitrap) and MASCOT helped quantify 142 differentially expressed proteins. Among these proteins, 104 proteins showed upregulated behavior and 38 proteins were downregulated with respect to the control, whereas 48, 32 and 24 proteins were upregulated and 8, 9 and 21 were downregulated CW (control with unmodified NPs), CY (control with modified NPs) and WY (modified and unmodified NPs), respectively. These proteins were further categorized on behalf of their regularity, locality, molecular functionality and molecular masses using gene ontology (GO). A STRING analysis was used to target the specific range of proteins involved in metabolic pathways and molecular processing in different kinds of binding functionalities, such as RNA, DNA, ATP, ADP, GTP, GDP and calcium ion bindings. Thus, this study will help develop efficient protocols for the identification of latent biomarkers in early disease detection using protein fingerprints.


Assuntos
Nanopartículas , Coroa de Proteína , Difosfato de Adenosina , Trifosfato de Adenosina , Cálcio , Compostos Inorgânicos de Carbono , Análise por Conglomerados , Guanosina Trifosfato , Compostos de Ferro , Nanopartículas/química , Coroa de Proteína/química , Proteínas/metabolismo , Proteômica/métodos , RNA
11.
Biomater Adv ; 137: 212847, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35929276

RESUMO

With the antibiotic crisis intensifies, the defense and treatment of pathogen infections in safe and effective fashion has become a critical issue. Herein, we report a novel and advanced type of sterilization agent designed via the functionalization DNA nanocarriers based on dihydromyricetin and CuO-loaded nanoparticles (DNA/DMY-CuO). Firstly, a pure dihydromyricetin (DMY) isolated from Ampelopsis grossedentata is used as a bridge to the stimulate the construction of DNA cross-linking networks by hydrogen bonding. Subsequently, a 3D spherical CuO-loaded nanocomposite (204.39 nm) is customized using the DNA/DMY network as a biological template through a simple coordination-assisted self-assembly method, which exhibits a high dispersibility, water-solubility and physiological stability. The reversible physical interactions in nanocarriers allows the selective separation and automatic release of CuO NPs from DNA/DMY-CuO in neutral and wound exudate environments, thereby extending the survival period of CuO NPs by nearly 24 h. Meanwhile, the nanocarriers system relied on the strong binding ability of DMY to the outer membrane of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) achieves controlled drug delivery onto the pathogen wall. The advanced antibacterial action of DNA/DMY-CuO also reflected in membrane destruction, cytoplasmic constituent leakages and ATP synthetic pathway cessation, thereby halting cytosolic metalloregulatory mechanisms and minimizing drug-resistant bacteria. In summary, such multi-functional CuO-loaded nanocomposite provides a water-dispersibility, controllable, low cytotoxicity and long-effective platform to address the ever-growing threats of bacterial infections.


Assuntos
Nanocompostos , Staphylococcus aureus , Antibacterianos/farmacologia , Cobre , DNA/farmacologia , Escherichia coli , Flavonóis , Água/farmacologia
12.
Sci Total Environ ; 835: 155457, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35469859

RESUMO

The diversity and adjustability of metal-organic complex enhance the function of metals and promote the burgeoning fields of chemical biology. In the present study, we chose two marine fish to explore the effects of a dihydromyricetin (DMY)-Zn(II) complex on the intestinal microbiome composition and liver biological function using high-throughput sequencing technology. Two economic fish species commonly found in Southern China (golden pompano Trachinotus ovatus and pearl gentian grouper ♀Epinephelus fuscoguttatus × â™‚Epinephelus lanceolatus) were exposed to dietary DMY-Zn complex for 4-week. Our study found that DMY-Zn performed a vital function on the improved anti-oxidative ability of both fish species. The Zn complex improved the stability of microbial community structure of the golden pompano by enhancing the α-diversity, but its impacts on the composition and diversity of intestine microorganisms of grouper were insignificant. BugBase results showed that the intestine microbiota following DMY-Zn exposure contained a lower abundance of potentially pathogenic bacteria and higher abundance of aerobic bacteria. Intestine health and utilization of carbohydrates were improved in the golden pompano, and unclassified bacteria were significantly enriched in the grouper. Liver transcriptome indicated that DMY-Zn affected the oxidative phosphorylation process (OXPHOS). Specifically, the OXPHOS process (map00190) was activated by promoting the glucose uptake (map04251, map04010) in golden pompano and lipid metabolism (map00071, map00140, map00062 and map00564) in grouper. Such difference in the responses of intestine microbiome and liver metabolism may be possibly explained by their different Zn basal requirements. Our study demonstrated that different fish species may have different responses to dietary DMY-Zn complex. The results provided a reference for the application of new additives in aquatic animal feed, and new insights into the roles of metal-organic complex in their biological impacts on fish.


Assuntos
Bass , Microbiota , Animais , Bactérias , Fígado , Transcriptoma , Zinco
13.
Polymers (Basel) ; 14(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35406148

RESUMO

Solid electrolytes have been regarded as the most promising electrolyte materials for the next generation of flexible electronic devices due to their excellent safety and machinability. Herein, composite solid electrolytes (CSE) with "polymer in ceramic" are prepared by using lithium aluminum titanium phosphate (LATP) as a matrix and modified poly(ionic liquid) as a binder. The results revealed that adding a poly(ionic liquid)-based binder not only endowed good flexibility for solid electrolytes, but also significantly improved the ionic conductivity of the electrolytes. When the content of LATP in the CSE was 50 wt.%, the electrolyte obtained the highest ionic conductivity (1.2 × 10-3 S·cm-1), which was one order of magnitude higher than that of the pristine LATP. Finally, this study also characterized the compression resistance of the composite solid-state electrolyte by testing the Vickers hardness, and the results showed that the hardness of the composite solid-state electrolyte can reach 0.9 ± 0.1 gf/mm2 at a LATP content of 50 wt.%.

14.
J Inorg Biochem ; 231: 111802, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35364443

RESUMO

Recently, silver nanoparticles have been widely applied in various fields as inorganic antimicrobial agents. This present study adopted a facile, environmentally friendly and cost-effective method to green synthesized silver nanoparticles via the extract of Dioscorea cirrhosa tuber (DCTE-Ag NPs). Green synthesized Ag nanoparticles were characterized by using the transmission electron microscope, X-ray diffraction analysis (XRD), UV-visible spectroscopy (UV-Vis), fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), etc. The results authenticate that the green synthesized Ag NPs were spherical in shape with an average size of 13.87 ± 2.38 nm and have crystalline properties. According to the antibacterial test, the average width of the inhibition zone of green synthesized Ag NPs against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) were 14.17 ± 0.84 mm and 13.01 ± 0.72 mm, respectively. The antibacterial property of Ag NPs was further evaluated by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), and the results indicated that they exhibited outstanding antimicrobial activity. Besides, DCTE-Ag NPs has the good bacteriostasis function, which can damage bacterial cells membrane to leak the intracellular contents and inhibit the activity of Na+/K+-ATP-ase to hinder energy conversion.


Assuntos
Nanopartículas Metálicas , Prata , Trifosfato de Adenosina , Antibacterianos/química , Bactérias , Escherichia coli , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Prata/química , Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Difração de Raios X
15.
Molecules ; 27(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35268672

RESUMO

Aiming at constructing photoresponsive spin crossover (SCO) behavior, herein we designed a new ligand Abtz (Abtz = (E)-N-(4-((E)-phenyldiazenyl)phenyl)-1-(thiazol-4-yl)methanimine) which was decorated by a photochromic azobenzene group. Based on this photochromic ligand, a mononuclear Fe(II) SCO molecule [Fe(Abtz)3](BF4)2·(EAC)2 (1, EAC = ethyl acetate) was successfully synthesized and showed a complete one-step SCO behavior. Under continuous UV light and blue-light exposure, the cis-trans photoisomerization of both ligand Abtz and compound 1 in the liquid phase was confirmed through UV-Vis spectra. Moreover, the 1H-NMR spectra of Abtz reveal a trans-cis conversion ratio of 37%. Although the UV-Vis spectra reveal the photochromic behavior for 1 in the solution phase, the SCO behavior in the liquid state is absent according to the variable-temperature Evans method, suggesting the possible decomposition. Moreover, in the solid state, the cis-trans photoisomerization of both Abtz and 1 was not observed, due to the steric hindrance.

16.
ACS Omega ; 7(51): 47996-48006, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36591177

RESUMO

The nanotechnological arena has revolutionized the diagnostic efficacies by investigating the protein corona. This displays provoking proficiencies in determining biomarkers and diagnostic fingerprints for early detection and advanced therapeutics. The green synthesized iron oxide nanoparticles were prepared via Withania coagulans and were well characterized using UV-visible spectroscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy, and nano-LC mass spectrophotometry. Iron oxides were rod-shaped with an average size of 17.32 nm and have crystalline properties. The as-synthesized nanotool mediated firm nano biointeraction with the proteins in treatment with nine different cancers. The resultant of the proteome series was filtered oddly that highlighted the variant proteins within the differentially expressed proteins on behalf of nano-bioinformatics. Further magnification focused on S13_N, RS15, RAB, and 14_3_3 domains and few abundant motifs that aid scanning biomarkers. The entire set of variant proteins contracting to common proteins elucidates the underlining mechanical proteins that are marginally assessed using the robotic nanotechnology. Additionally, the iron rods indirectly possess a prognostic effect in manipulating expression of proteins through a smarter route. Thereby, such biologically designed nanotools provide a dual approach for medical studies.

17.
Sci Total Environ ; 816: 151497, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-34752869

RESUMO

Metal zinc (Zn) has been the focus of many environmental toxicological studies, but there are limited studies on its potential dietary molecular toxicity and physiology. The present study was the first to use multi-omics-based approaches to explore the fish intestine-liver axis under dietary Zn exposure. Golden pompano Trachinotus ovatus were exposed to different dietary concentrations (78.4, 134.6, and 161.4 mg/kg as the control, low-dose Zn, and high-dose Zn groups, respectively) of Zn for 4-week. Low-dose Zn exposure significantly promoted the fish growth, whereas the high-dose Zn exposure reduced the fish growth. Co-analysis of 16S diversity, metagenome and transcriptome showed that the low-dose Zn enriched the intestinal microflora and changed the dominant microflora abundances (Proteobacteria, Fusobacteria, Firmicutes and Bacteroidetes), as well as activated the growth hormone metabolism in the liver. Meanwhile, the high-dose of Zn caused the intestinal microbiota dysbiosis, activated the Type VI secretion systems (T6SSs), and further triggered the oxidative stress response, immunity, and antiviral function of the liver. Multi-omics revealed the interference of long-term Zn dietary exposure on the intestine-liver axis. There was an apparent homeostasis of Zn accumulation in the fish tissues, but the window of dietary Zn nutritional requirements versus toxicity appeared to be narrow for the golden pompano. These results provided new insight into the adverse effects and regulatory mechanisms of dietary Zn requirements and toxicity in marine fish.


Assuntos
Ração Animal , Zinco , Ração Animal/análise , Animais , Proteínas de Peixes/genética , Peixes , Intestinos , Fígado , Zinco/toxicidade
18.
Int J Biol Macromol ; 194: 611-618, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34822818

RESUMO

In this work, a novel sustained released system (VCSB-Zn(II)) for zinc supplements was built by vanillin-chitosan Schiff base (VCSB) chelated with Zn2+ to improve the zinc trace element utilization ratio. Samples were characterized by FT-IR, 1H NMR, XRD, SEM, and TGA. The results showed that VCSB exhibited a more excellent chelation capacity of Zn2+ than chitosan. The chelation capacity of VCSB was about 1.7 times more than that of chitosan, corresponding to 50.96 mg/g and 29.91 mg/g, respectively. Furthermore, VCSB-Zn(II) showed excellent sustained released performance at simulated gastric fluid because of the acid slow-dissolving ability. And the higher the CN content of VCSB, the higher the cumulative release rate (Ri) of Zn2+, the highest Ri reached 77.81%. The sustained released curves were described by the first-order and Korsmeyer-Peppas equation, which described the Zn2+ sustained released performance caused by the dissolution of VCSB-Zn(II) and Fick diffusion. This Zn2+ sustained released system shows great potential in the application in the field of trace elements supplements for animals.


Assuntos
Benzaldeídos/química , Quitosana/química , Zinco/química , Liberação Controlada de Fármacos , Bases de Schiff/química
19.
ACS Omega ; 6(38): 24585-24594, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34604640

RESUMO

This article introduces an environmentally friendly and more economical method for preparing red selenium nanoparticles (Se-NPs) with high stability, good biocompatibility, and narrow size using yeast as a bio-reducing agent with high antioxidant, immune regulation, and low toxicity than inorganic and organic Se. The yeast-derived Se-NPs were characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results revealed spherical-shaped particles of Se-NPs with an average diameter of 71.14 ± 18.17 nm, an amorphous structure, and surface enhancement with an organic shell layer, that provide precise geometry and stability in the formation of bio-inert gray or black Se-NPs instead of red Se-NPs. Furthermore, the addition of 0.3-0.8 mg/kg Se-NPs in the feed significantly improved the health of mice. As Se-NPs stimulated the oxidative state of mice, it significantly increased the level of GSH-Px, SOD, and AOC, and decreased the level of MDA. The yeast-derived Se-NPs alleviated the immunosuppression induced by cyclophosphamide, whereas protected the liver, spleen, and kidney of mice, stimulated the humoral immune potential of the mice, and significantly increased the levels of I g M, IgA, and I g G. These results indicated that the yeast-derived Se-NPs, as a trace element feed additive, increased the defense of the animal against oxidative stress and infectious diseases and therefore Se-NPs can be used as a potential antibiotic substitute for animal husbandry.

20.
Food Funct ; 12(19): 9007-9017, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34382988

RESUMO

The biofilms produced by the aggregation of bacterial colonies are among the major obstacles of host immune system monitoring and antimicrobial treatment. Herein, we report PEGylated dihydromyricetin-loaded liposomes coated with tea saponin grafted on chitosan (TS/CTS@DMY-lips) as an efficient cationic antibacterial agent against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), which is supported by their deep penetration into bacterial biofilms and broad pH-stable release performance of dihydromyricetin (DMY). The successful construction of the drug delivery system relied on tea saponin grafted on chitosan (TS/CTS) via formatted ester bonds or amido bonds as a polyelectrolyte layer of PEGylated dihydromyricetin-loaded liposomes (DMY lips), which achieved controlled release of DMY in weak acidic and neutral physiological environments. The micromorphology of TS/CTS@DMY-lips was observed to resemble dendritic cells with an average size of 266.49 nm, and they had excellent encapsulation efficiency (41.93%), water-solubility and stability in aqueous solution. Besides, TS/CTS@DMY-lips displayed effective destruction of bacterial energy metabolism and cytoplasmic membranes, resulting in the deformation of the cell wall and leaking of cytoplasmic constituents. Compared to free DMY, DMY lips and chitosan-coated dihydromyricetin liposomes (CTS@DMY-lips), TS/CTS@DMY-lips has more thorough killing activity against E. coli and S. aureus, which is related to its excellent sustained release performance of DMY under the protection of the TS/CTS coating.


Assuntos
Antibacterianos/farmacologia , Saponinas/farmacologia , Chá , Antibacterianos/química , Composição de Medicamentos , Metabolismo Energético , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Flavonóis/química , Humanos , Lipossomos/química , Testes de Sensibilidade Microbiana , Respiração , Saponinas/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...